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Starting from the fact that the geodesic structure of the projective space of 
quantum pure states gives a natural explanation for the fundamentality of spin 
I /2  systems in relativistic quantum theory_, and making use of the inducing 
construction for infinite-dimensional representations of groups in vector bundles 
over projective space, a proposal for unifying physical theo~ in terms of a 
possible derivation of relativistic physics from pure quantum theory, is presented. 

In the spirit of this conference as set by the opening paper of P.A.M. 
Dirac-- the  investigation of pretty mathematics as a source of explanations 
for physical phenomena-- the  present paper is a progress report on an 
exploration of the mathematics of the projective geometry underlying quan- 
tum theory as a possible explanation for the appearance of relativity in 
physics. What originally stimulated interest in this line of investigation was 
noticing, from some purely mathematical computations the author was 
making in the summer of 1980, that the geodesics of an arbitrary-dimen- 
sional projective geometry (the ray space of pure states in quantum theory) 
corresponded exactly to the evolution of spin 1/2 systems in quantum 
physics, in the following sense: if one requires that a quantum system evolve 
along the simplest possible t rajectory--a geodesic of quantum ray space--  
then the motion of the corresponding state vector is limited exactly to a 
two-dimensional subspace of the ambient Hilbert space from which the ray 
space is derived. In hindsight this result is obvious, since projective space is 
essentially a locally spherical manifold [technically. a space of constant 
holomorphic sectional curvature (Kobayashi and Nomizu, 1969) and so its 
geodesics must look like great circles, i.e., two-dimensional plane curves. 

~Presented at the Dirac Symposium, Loyola University, New Orleans, May 1981. 

2Partial support for the initial stages of this research was provided by Research Corporation. 
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Another way of saying this is that the geodesics of n-dimensional real or 
complex projective space (P,R or P,C) are embedded copies of real one- 
dimensional projective space P~ R. 

Now Dirac has consistently called attention to the rather surprising 
nature of the fact that spin 1//2 is simpler than any other spin value, for 
example in this treatment of electron spin in The Principles of Quantum 
Mechanics and, more recently, in describing at a conference similar to this 
one how the search for pretty mathematics contributed to his discovery of 
the equation that bears his name: 

Surprisingly, the particle with spin 1//2 appeared as simpler to treat than the particle with 
no spin. One would have expected that one would first have to solve the problem of the particle 
with no spin and then subsequently bring in the spin. But the mathematics showed otherwise. 
The mathematics led the way. (Dirac, 1978l 

Up to the present time, of course, the physical explanation of the fundamen- 
tality of spin 1/2 has been that originally given by Dirac: impose restric- 
tions from classical relativity theory on quantum theory and spin 1/2 comes 
out as a property of the basic solutions of the resulting relativistically 
invariant Dirac equation. In the geodesic structure of the projective space of 
quantum states, however, we seem to have an alternate, purely geometric, 
explanation without the need to impose relativity on quantum theory from 
the outside. The fundamentality of the sp in - l /2  case in quantum theory 
follows naturally from the fundamentality of geodesics in any manifold as 
the simplest possible curves in the manifold. If this piece of what is 
standardly regarded as relativistic quantum physics can be derived from 
fundamental quantum theory alone without benefit of relativity theory, the 
question naturally arises as to how much more of relativistic physics (and 
the rest of modern physics) might come out of the basic nonlinear projective 
space geometry of quantum states if it is taken seriously as the fundamental 
geofnetry of the observable universe and the methods of modern differential 
geometry are applied to develop the consequences. That such methods have 
not previously been used in the way proposed here seems mainly due to the 
almost exclusive emphasis in the development of quantum theory on the 
homogeneous coordinatizations available over projective space (standard 
state vector or wave function representation of states); it is the use of such 
coordinatizations that is responsible for the linear appearance of quantum 
theory and for the fact that properly nonlinear differential geometric 
methods seem superfluous. An example of just how much can be concealed 
by homogeneous coordinatizations was pointed out early in the history of 
quantum theory by Hermann Weyl (1931) under the title "Quantum 
Kinematics as an Abelian Group of Rotations." He noted that an Abelian 
group of transformations of quantum ray space was induced by the non- 
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Abelian action on the ambient  Hilbert space of operators  e ixq, e iyp, x, y E 
R, q p - - p q - - I .  If the fundamental  commuta t ion  relations of s tandard 
quan tum theory are an effect of homogeneous  coordinat izat ions rather than 
an intrinsic proper ty  of the t ransformations of states, how much more might 
be hidden in the interrelation between projective geometry and its linear 
space representations? It does not take much investigation of the matter  to 
lead to the suspicion that most, if not  all, of the infinities appearing in 
relativistic quan tum physics might well be the result of  ignoring chart 
l imi ta t ions - -a  mathematical ly hazardous enterprise over any manifold,  as 
general relativists learned some years ago. But if one is unaware of  working 
over a nonlinear manifold,  it is quite easy to encounter  such predictions as 
an infinite amount  of  land just north of  the immense continent  of  Green- 
land. 

In any case, the currently available results of an ongoing investigation 
of such matters are presented here. As will quickly become evident, the 
results at present are more in the nature of tantalizing leads and directions 
for more work, rather than final answers in definitive form. Enough has 
been uncovered, however, to lead to the conviction that the work should be 
carried to full conclusion. If successful, the reward will be the full unifica- 
tion of  20th century physics in terms of  some very simple and pretty 
mathematics.  

In light of  the questions posed above, a purely mathematical  result 
concerning the natural structures available over projective space takes on 
new significance. The construct ion has previously been applied for getting 
infinite-dimensional representations of groups, and we paraphrase slightly 
the relevant facts as given in that context by Robert  Hermann  (1966) in Lie 
Groups for Physicists [cf. also Hermann ' s  Topics in the Mathematics of 
Quantum Mechanics (1977) for the general formulat ion of quantum theory 
in terms of projective geometry]: 

For each integer r~>0, there is a homogeneous line bundle on P,,(C) with an SL(n + 
I,C)-invariant unitary_ inner product on the cross sections. The action of SU(n + 1) on the 
cross sections defines a reducible unitary_ representation of SU(n +1) that decomposes into 
traceless symmetric tensors of the type A{'...,J~ ~, and each representation occurs only once. As 
k runs from 0 to ~ the representations form a "'ladder." The unitary representation of 
SL(n + I,C) on the cross sections is irreducible, and the noncompact operators in the Lie 
algebra of SL(n + I,C) shift up and down the ladder. 

Before going into the computa t ional  details of this construction, we look at 
some of the applications suggested by the lowest orders. Since the result is 
basically derived from the mathematics  of induced representations, we will 
for brevity from now on refer to it as the inducing construction. 

For  n = 1 the construct ion gives an infinite-dimensional Hilbert space 
H~ of cross sections of a complex line bundle over P~C, equipped with a 
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natural unitary representation of SL(2, C) on the cross sections ~p E H~. 
Now of course the wave functions of standard relativistic quantum theory 
are cross sections of a line bundle over projective ray space with an action 
of the group SL(2, C); physically the group elements are interpreted in 
terms of Lorentz rotations and boosts of observer reference frames (cf., for 
example, Chap. 1 of Streater and Wightman, 1964). If we are to try out the 
idea that the mathematical occurrence of SL(2, C) from the inducing 
construction should be identified with the occurrence in physics of restricted 
Lorentz invariance, then we are led to the interpretation of each distinct 
cross section representation ~ of a fundamental quantum ray space trajec- 
tory in P~C as somehow corresponding to a distinct observer viewpoint, or 
more generally, a distinct observer preparation, of the same fundamental 
system. A transformed cross section U~q, would then give the appropriate 
wave function to represent the system in an observer frame or lab differing 
from the original by the Lorentz transformation corresponding to g 
SL(2, C). If this interpretation can be consistently carried through, several 
puzzling features of the standard formulation of quantum theory can be 
explained. First, foundational studies have never revealed a fully satisfac- 
tory explanation for the assumed necessity of infinite-dimensionality in the 
fundamental space of quantum theory. In the proposed interpretation we 
see that there is no need to postulate infinite-dimensionality, since over even 
the lowest-dimensional projective spaces there are available natural 
infinite-dimensional cross-section spaces to handle any structures that can- 
not survive in lower dimensions. Second, the association of frame-depen- 
dent quantities with the "upstairs"  space rather than with the base manifold 
of quantum systems seems to fit with the fact that the quantities standardly 
assigned unbounded operator representations (e.g., position, momentum), 
and so requiring infinite dimensions, do not characterize intrinsic properties 
of the system under observation, but rather properties of the system relative 
to some observing frame. Thus we see the possibility of a natural distinction 
between physical observables intrinsic to a system and those that are more 
in the nature of parameters labeling different ways of representing the 
system, essentially involving many other systems of a complicated macro- 
scopic or microscopic type. This would bring a concomitant clarification of 
the mysterious role of classical continuous spectrum observables in modern 
quantum field theory and would provide also the proper setting for field 
quantities satisfying boson commutation relations and representing interac- 
tions of systems--quantit ies that even classically require an infinity of 
degrees of freedom. This line of thought points back to the previously 
mentioned fact that quantities satisfying commutation relations requiring 
infinite-dimensionality correspond to a particular coordinatization of pro- 
jective space rather than to its intrinsic structure. 
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However this may ultimately turn out, if we simply assume for the time 
being that the classical and quantum physics of relativistic electrodynamics 
finds its proper mathematical milieu in the cross-section structure of bun- 
dles over the simplest complex projective submanifolds of projective N-space 
(P~C), then we can go on to note that the n = 2  case of the inducing 
construction gives the mathematics standardly associated with strong inter- 
action physics--irreducible unitary representations of SL(3, C) with reduc- 
ible representations of SU(3). This suggests, of course, the possibility that 
the appearance of hadrons in physics is simply the first encounter with 
systems and processes that intrinsically require two projective space dimen- 
sions for their proper mathematical description, and hence three dimensions 
of the ambient Hilbert space, with correspondingly richer cross section and 
bundle structure available over the more complicated trajectory structure 
possible in the base manifold; it also suggests the association of increasing 
values of the parameter n in the inducing construction with the quantized 
differences in interaction types uncovered in modern physics, as well as with 
the increasing orders of magnitude of the energies necessary to uncover and 
study the fundamental particles and processes involved in the various 
interaction types. 

Now we will investigate in some detail below the possibility that the 
well-known isomorphism between Minkowski space and the two-by-two 
self-adjoint matrices representing quantum theoretical observables over P~C 
(ambient space C z) is not mere coincidence, but rather the way that the 
observable quantities on the simplest possible processes in quantum ray 
space should manifest themselves. If this interpretation is accepted, then the 
four-dimensional appearance of the macroscopic universe would be uniquely 
associated with electromagnetic means of observation (proper to the n = 1 
case of the inducing construction), and standard relativistic physics should 
give way to the appropriate analog--the nine-dimensional space of self- 
adjoint operators on C 3 (the ambient space for PzC) when the strong 
interaction predominates. Is there evidence for this breakdown of the 
four-dimensional structure of the observable universe in modern physics? At 
the fundamental particle level it is hard to say, since the normal operational 
definitions of the standard space-time variables seem to become fuzzy, but it 
is interesting to note that, at the cosmological level, the standardly accepted 
sequence of final states of stars of increasing mass (white dwarfs, neutron 
stars, black holes) requires the introduction of strong interaction physics for 
any detailed understanding of the type of matter that forms the gateway to 
the infinite mass density predictions of general relativity. If we apply the 
strict scientific logic that has prevailed in the past when a classical theory 
has predicted actual infinities (ultraviolet and infrared catastrophes, for 
example), we should interpret the singularities of general relativity as the 
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first signs of limitations of applicability of the theory. The mathematical  
model proposed in the present paper  provides a framework for understand- 
ing why the detection in cosmological physics of hadron matter  and beyond 
(n 7> 2) should be associated with difficulties in applying a theory based on 
the four-dimensional structures proper to electrodynamics; more positively, 
the model predicts definite higher-dimensional structures to replace and 
generalize the lower-dimensional ones as needed. We omit here the obvious 
further conjectures concerning the role of higher orders [n = 3, SL(4+ C), 
SU(4), etc.], except to note that the mathematical direction indicated by the 
inducing construction seems to fit the pattern of current theoretical research 
into the unification of the fundamental  interactions of physics. 

The interpretation of physical theory proposed here depends on being 
able to identify the Lorentz invariance found in nature with the natural 
action of SL(2, C) on the cross sections of the line bundle over P~C given by 
the inducing construction: P~C is understood as the complex ray space 
generated by the simplest possible nonstationary evolution of a quantum 
system, and cross sections are given their standard interpretation as wave 
functions. Let us look at some of the details of the inducing construction in 
this fundamental case. [For background and further details, see Hermann 
(t966) and Mackey (1968).] In general the construction depends on the fact 
that P,,C is a homogeneous space of the group SL(n + 1, C)+ i.e., that P,,C 
can be realized as a left coset space SL(n + 1 ,C)/G o = {gGo; g ~ S L ( n  + 
1,C)}, where G 0 is a closed subgroup of SL(n + 1,C). Then the Hilbert 
space of cross sections of a line bundle over P,C can be represented either 
directly as complex functions ~b on P,,C, square integrable with respect to the 
class of measures associated with the Riemannian metric on projective 
space, or, equivalently and for many purposes more conveniently, as the 
space of functions f on SL(n + 1, C), square integrable with respect to the 
natural Haar  measure, and having the property 

(gh) (g), h 6o 

where o is a representation of G O in C. To each such representation of G O 
there corresponds a complex line bundle Eo over P,,C such that the Hilbert 
space generated by the square-integrable cross sections sustains a unitary 
representation of SL(n + 1, C). In relation to P,,C, of course, G O is simply 
the isotropy subgroup of some fixed projection under the natural action of 
S L ( n + I , C )  on the ambient space C "+~. The two different modes of 
presentation of cross sect ions--as  functions + over P,,C or as functions 
over SL(n + 1, C) satisfying sufficient requirements to define functions on 
P,,C--are equivalent in the sense that given one we can uniquely construct 
the other and vice versa, and all relevant bundle structures translate 
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properly. We will consistently use the tilde (-) to distinguish the various 
structures in their presentation over S L ( n + I , C ) .  Note that the cross 
sections referred to in our original statement of the results of the inducing 
construction are in the presentation over the group, and the tensorial 
character of the representations results precisely from the imposition of the 
necessary conditions to make everything work over S L ( n + I , C ) .  Full 
details are contained in Hermann (1966), but briefly, the cross sections are 
given by 

• ( g )  = 
A:":',,...,~.:,,, (~)...z,~,(g)~,(g)...~,(g)o, 

Iz(g)l  2k+" 

where z ( g ) E  C "+~ is the first column in an initially chosen matrix realiza- 
tion of S L ( n  + I ,C) .  

Specializing to n = 1 and using the Dirac-style notation q~ = ]4')@] for 
elements of P~C, where 1~) represents a corresponding unit vector in some 
"abstract" ambient space, we will think of ~, f ,  etc. (without the ket symbol 
I)), as representing some sort of "functional" realization of the abstract 
vectors, to be specified more precisely in context. Concretely realizing and 
parametrizing P~C as the set of matrices of the form 

~ (0,cp) = ( c~ cos0sin0e '*) 
cos 0sin 0 e ~ sin -~ 0 

simultaneously realizes the action of 

(z,z, t = E G  = S L ( 2 , C ) ,  
g z 2 z 4 2124--Z223=l 

on PIC by the formula 

g ( 4 ) -  g4g  + _ g : g  + 

tr(gq;g + ) (+]g+g]+)  

The characterization of P~C above, of course, results directly from imposing 
self-adjoint, idempotent, trace 1 conditions on 2 • 2 matrices. We note that 
distinct geodesics connecting the orthogonal pair of projections t0 = q~(0, cp), 
~['m = ~(~r/2, q)), are labeled by distinct fixed values of the parameter q0 C 
[0, 2~r). The matrix rep:esentation used is that defined by a basis I q,0), I q~) 
corresponding to ~'0, +1, and in terms of this basis the general unit vector 
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corresponding to q~(0, q~) is 

[r = e4(c~ +sinOe'~e[+,) ) 

Choosing ~ = 0 and incorporating e ~ into the choice of basis vector Iq01) 
provides a real representation for each geodesic and makes evident the 
isomorphism of geodesics with both Pj R and the circle. 

The isotropy subgroup G O C G leaving q~o = (~)  invariant consists of all 
w i w  3 matrices of the form h = (0 ~., ' )" and so is a four-parameter  subgroup of the 

six-parameter G = SL(2, C). The representations of G 0 in the complex 
numbers are of the form 

o~(h) = ( w , / i  w, l) ~ 

and it is to each of these (with r an integer) that a line bundle over P~C and 
G can be made to correspond. The assignment of projections to group 
elements is made in the obvious way by defining, for g = (=:s 

1 (1  2j l) 
r 1 6 2  1+1:2/z, [2 z2/_ L iz_~/_l 2 

i.e., we simply use the natural action of the matrices g on the projection q;0, 
and we see that ~ ' (g)=  z 2 / z  I = o e  w provides coordinates (,o,~) for PIC. 
Compar ing  with our earlier matrix realization of projections, we have 
p =  tan0. Choosing r = 0  for simplicity, so that o o is just the identity 
representation %(h)= 1, h E G o, we see that the only condition needed on 
f :  G ~ C in order to define a cross section is that q; should be homogeneous 
of degree zero in the group variables z l, =2. Writing ~ = g(~o), we have as 
the relation between the two different modes of presentation of cross 
sections 

r (g) = r ( :~ / : , )  = r 

and corresponding infinite-dimensional representations of the group G are 
specified in both presentations by 
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Unitarity is then achieved by defining 

I /2+ i s  

where s can be an arbitrary real parameter and Jg,.,~ = Jr  I..~ is the Jacobian 
of the coordinate transformation induced by g~, with of course the corre- 
sponding definition for /_) in terms of ,] over group space. The inclusion of 
the proper power of the Jacobian, of course, simply serves to cancel out the 
Jacobian in the integral ]+12 that defines the inner product for cross 
sections. We can now assign to any individual projection ~' = g(t/o) the wave 
function f~: G ~ C: g, ~ ~ ( g ,  ) =  [U~,q~](g). Thus we have the full machin- 
ery for formulating cross sections either over projective space or over a 
fundamental symmetry group of physics. The idea that quantum theory has 
its most natural setting when formulated in terms of the functions, differen- 
tial equations, and generalized Fourier analysis available over groups is not 
new, and has been investigated in a nonrelativistic Abelian group context by 
J. Malzan (1974) in an interesting paper "Quantum Mechanics Presented as 
Harmonic Analysis." We intend to investigate this line of thought thor- 
oughly, but at present we can only offer the conjecture that the interpreta- 
tion given by Malzan to the fundamental frame-dependent observables of 
physics (momentum, energy, angular momentum, position, etc.) in terms of 
analysis over groups should prove a fruitful tool in interpreting the corre- 
sponding observables in the intertwined structure of wave functions over 
projective space and wave functions over groups provided by the inducing 
construction. 

Returning now from our sketch of the mathematical details to the 
problems of physical interpretation, and short of a full answer, what 
tentative conclusions might be conjectured.'? If the association of our free- 
dom to choose a variety of different cross section representations of the 
same basic quantum trajectory with the freedom to subject the same 
fundamental physical system to a variety of different circumstances (differ- 
ent system preparations, different macroscopic observing techniques, differ- 
ent fields, etc., analogous to different boundary conditions) is accepted, and 
the elements of SL(2, C) have their standard interpretation as Lorentz 
frame changes, then these two observer "degrees of freedom" should be able 
to account for the full array of quantum electrodynamical phenomena 
associated with a charged spin-1/2 particle. A clue that this is moving in the 
right direction is provided by the fact that the standard treatment of such a 
particle in a constant magnetic field results in a geodesic trajectory ~(0) for 
the system represented in ray space, with the parameter interpreted as 
precessional angle about an axis defined by the magnetic field. Allowing 
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accelerated observing frames and various initial field strengths already 
account for a great variety of phenomena, and the fact that the frequencies 
associated with such systems provide one of the best operational means of 
defining precise fundamental time standards gives some weight to the 
possibility that ultimately our whole macroscopic four-dimensional electro- 
magnetically conditioned worldview may be built up as a mosaic of interac- 
tions with just such elementary systems. This line of thought is reminiscent 
of an old but durable idea in quantum physics: the apparently complete 
interchangeability and indistinguishability of particles of the same type at 
the microscopic level, say electrons, should receive a fully satisfactory 
explanation only in terms of a theoretical structure that predicts in some 
sense just one underlying "electronic field," of which we, with our various 
observing means, catch only facets and glimpses. The inducing construction, 
with its hierarchy of levels, each with an immense richness of structure over 
it, seems to provide a step towards making such a model precise. 

A seemingly peripheral issue deserves mention, since it gives indica- 
tions of becoming important. If we start with real instead of complex 
projective space and look at the Hamiltonian dynamics possible over a 
geodesic, P~ R, using the standard techniques of modern analytical dynamics 
(Abraham and Marsden, 1978) we find that we must work in a four-dimen- 
sional manifold (the tangent bundle of the cotangent bundle) over the 
original one-dimensional space. The metric defined by dynamics for the 
four-dimensional space has signature ( + ,  + ,  + , - ) ,  with the last ( + , - )  
part corresponding to the symplectic metric of the cotangent bundle. When 
we use the natural complexification of the cotangent bundle [(q, p) - q + ip] 
and translate everything over to P~C, we seem to be led inevitably to the 
group SL(2, C) as an appropriate means of defining symplectomorphisms 
(canonical transformations) of the dynamical structure. If we can give this a 
satisfactory physical interpretation, we would simultaneously have an ex- 
planation for the complex numbers in standard quantum theory (the 
complexification natural to Hamiltonian dynamics over a cotangent bundle) 
and for the fact that the complex projective space of quantum theory seems 
to correspond to classical phase space (coordinate and momentum space). 

Finally, we come to a "'coincidence" that the author finds hard to 
ignore: the well-known isomorphism between Minkowski space and the 
self-adjoint operators on C 2, the ambient Hilbert space for P~C. If our basic 
supposition is correct, that the fundamentality of spin 1 /2  in physics comes 
about from the fundamentality of geodesics in projective space, with corre- 
sponding geometric confinement of the evolution of such a system to a 
two-dimensional subspace of the ambient Hilbert space, then the self- 
adjoint operators on 2-space (observables on P~C systems) should have 
correspondingly fundamental significance. This stands out most clearly 
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when we note that arbitrary observables A on a general ambient Hilbert 
space for quantum theory compress down to 2 x 2 self-adjoint operators X~ 
when applied to systems ~(0, cp) confined to P~C, i.e., if P is the two-dimen- 
sional projection corresponding to the subspace generated by ~(0, ~), then 
the trace formula for computing quantum expectation values gives 

A-= tr[A~ (0,cp)] - - t r [PAP S (0, cp)] = t r [X4 ~ (0,cp)] = XA 

Thus the mapping A -- X A = PAP serves as a projection of general observa- 
bles down to 2 •  observables, and we see that all possible quantum 
theoretical information that can be determined on a system confined to P~C 
comes via the mediation of 2 X 2 self-adjoint operators. 

Now the significance of the space ~ of 2 • 2 self-adjoint operators has 
previously been recognized in quantum theory in terms of bases % E 9s 

= 0, 1,2, 3, containing the Pauli operators interpreted as spin observables, 
with o 0 = P = lc:. Penrose (1971) has suggested a possibly more fundamen- 
tal significance in a combinatorial approach to building up space itself from 
the quantum rules the spin observables obey (spin networks). A still more 
fundamental significance might be hidden in the supposed coincidence 
referred to earlier if a direct interpretation of the space of observables ~'( as 
either energy-momentum or time-position Minkowski space could be found 
--something along the lines of interpreting the trace formula tr(X~) as the 
expectation value that system ~ would be detected at (or by observing 
system corresponding to) Minkowski space point X. The simplest tensorial 
cross sections given by the inducing construction are of the form tr(X~) = 
(~bl Xl~b), but the full resolution of this line of investigation awaits further 
work, because of difficulties of interpretation involving probabilities, proba- 
bility amplitudes, etc. However, let us look at some leads that might 
motivate such an investigation. The isomorphism between Minkowski space 
and the self-adjoint operators Xr  ~( is specified by 

x o + X I x~ + ix 3 ) 
- = g  

(Xo'XI'X2"X3)~ x 2 - - i x  3 X0--X I 

with the Euclidean inner product (X, Y )  on IX transformed to the Minkowski 
scalar product X. Y by replacing the standard adjoint X + in the formula 
( X , Y ) = � 8 9  by the "classical" adjoint X E+J, to give X . Y  
= �89 tr( X 1 + 1 y).  The classical adjoint 

X [+]= [ x ~  xl - x 2 -  ix31 
\ - -  x 2 + i x  3 Xo + x 1 ] 
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is related to the inverse, in the sense that it is the inverse short of division by 
the determinant. Thus, for Det( X ) ~  0, we have 

X I§ = De t (X)X-  i 

and we see that the light cone in Minkowski space corresponds to the 
noninvertible operators [Det(X) = 0], and these are exactly all multiples of 
one-dimensional projections, i.e., quantum pure states. The forward light 
cone and interior correspond to positive operators, with the interior made 
up of multiples of mixed states. Thus the Minkowski metric locates and 
classifies quantum states in a way that is suggestive of what one might want 
if some interpretation is to be given of states as quantum observing events 
building up our (3+l)-worldview. Obviously, much further work in the 
interpretation of quantum theory must be done before anything can be 
made of this suggestion, but again it seems to be pointing toward geodesics 
of projective space with their associated two-dimensional and four-dimen- 
sional structures as fundamental roots of relativity in physics. In fact the 
structures provided by the inducing construction seem to be so intrinsically 
relativistic that one of the problems encountered in interpreting the for- 
malism so far has been the difficulty of finding simple nonrelativistic test 
case examples (Schr~Sdinger equation solutions, etc.) for guidance. From the 
proper perspective, this can be viewed optimistically, however, since we 
should probably look with suspicion on any model that allows easy and 
direct formulation of nonrelativistic results except as low-energy limits. 
Thus we can hope that, when fully worked out, the results of the inducing 
construction will satisfy the criterion, attributed to Einstein, for mathemati- 
cal methods in physics: they should "make the good easy and the bad 

difficult." 
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